4 research outputs found

    Peripheral mechanisms for fine tactile perception: behavioural and modelling approach

    Get PDF
    The tactile system is highly complex. The properties of its central and peripheral components determine the way external stimuli are transformed into perception. At the very first stage, first-order tactile neurons respond to skin mechanical deformation and their activation convey a representation of the sensed object (i.e., encoding). However, there are several open questions regarding which factors can significantly influence the peripheral neural response and hence, perception. The goal of the work presented in this thesis is to provide new evidence about the link between skin properties, object’s characteristics, first-order tactile neurons response and discriminative judgments. Chapter One provides an overview of the tactile system with a focus on the peripheral components (e.g., skin, first-order tactile neurons), as well as a summary of the relevant behavioural findings on tactile perception in Young and Elderly. Chapter Two outlines the methods used in this work including psychophysics, a device to present tactile stimuli in a controlled fashion, skin measurement techniques, and manufacturing of fine-textured stimuli. Chapter Three provides an in-depth review of computational models that simulate the response of first-order neurons and how they can be applied for psychophysical research. Chapter Four is the first empirical chapter that evaluates the effects of skin and mechanoreceptive afferent properties on spatial tactile sensitivity in young and elderly participants assessed with the 2-point discrimination task. Chapter 5 is the second empirical chapter that investigates the effects of the interaction between finger and surface properties on the detection sensitivity for a single microdot in young participants with active exploration. Chapter Six summarises the findings of the research undertaken in my doctoral studies and discusses their implications for understanding the sensory mechanisms underlying tactile perception. Overall, the findings presented in this thesis suggest that the progressive loss of mechanoafferent units contribute to the decline in tactile spatial acuity as predicted by a population model of the afferent response, and provide new evidence on the complex effects of frictional changes and the role of skin biomechanics on the detection of a microdot

    Skin and mechanoreceptor contribution to tactile input for perception:a review of simulation models

    No full text
    We review four current computational models that simulate the response of mechanoreceptors in the glabrous skin to tactile stimulation. The aim is to inform researchers in psychology, sensorimotor science and robotics who may want to implement this type of quantitative model in their research. This approach proves relevant to understanding of the interaction between skin response and neural activity as it avoids some of the limitations of traditional measurement methods of tribology, for the skin, and neurophysiology, for tactile neurons. The main advantage is to afford new ways of looking at the combined effects of skin properties on the activity of a population of tactile neurons, and to examine different forms of coding by tactile neurons. Here, we provide an overview of selected models from stimulus application to neuronal spiking response, including their evaluation in terms of existing data, and their applicability in relation to human tactile perception
    corecore